
>_Terminal

PROBLEM SLOVING REPORT BY:
RISHUB JAIN, DEVENDRA CHAPLOT AND PAUL LIANG

W h a t i s T e r m i n a l ?
Terminal is the world’s largest AI programming competition, organized by

Correlation One (www.correlation-one.com). In Terminal, players play a

digital game programmatically, by coding their strategies into algorithms.

These algorithms then face off against each other in an algo vs. algo

practical coding challenge.

Building a strategy for Terminal requires a holistic set of engineering,

problem-solving, and strategic thinking skills.

In addition to the main competition, Terminal and its sponsors host several

live, in-person “game nights” in cities across the globe. During game

nights, participants work in teams of 3 and have ~6 hours to build the best

possible algorithm.

In this write-up, I walk through how I approached this problem during the

2019 Game Night and the skills I used. It gives you an insight into my

problem-solving approach and thought process throughout the game night.

T e c h n i c a l F a c t s a b o u t T e r m i n a l
The competition page is here: https://c1games.terminal.com
There were 6 hours to code an algo

Bots were coded in teams of 2 or 3

Players could code algos in Python, Java, and Rust

>_T / 0 1

> _ T e c h n i c a l S t a c k

Q1.1. Which programming languages, environments, and tools did you

use during the competition, and why? If any were new to you, how did you

assimilate them into your existing knowledge and how did you leverage

them in practice?

>_T / 02

We use python to implement our algorithm, but no external tools and packages
apart from those built into python such as dictionaries, heaps etc. We used learned
and used the python debugger pdb for pesky bugs which was important since
rerunning the script with print statements would take time. Pdb allows us to place
check points and inspect the variables at each step of computation. We believe
that pdb will also be an important debugging tool when we code in the future.
In addition to individual implementations of the code, we also learned how to
collaborate effectively using Github.

> _ S t r a t e g y D e v e l o p m e n t

Q2.1. What was your detailed process for improving your strategies and

code over time? What significant obstacles did you encounter in this

process, and how specifically did you work through those obstacles?

>_T / 03

We generally approached the problem as an optimization problem over actions
and locations. We optimize over actions to determine which units to place given
our fixed budget, and we optimize over the locations to place these attacking and
defending units. The objective function is some measure of the expected long term
reward that we gain with respect to the opponent’s best response strategy. To
obtain an estimate of these rewards, we perform simulation on the current state
of the game to see how our actions impact the units on the board and the number
of points for each player. Obviously attempting to solve this large optimization
problem exactly quickly becomes intractable: there are an exponential number
of {action, location} combinations to try. Therefore, the most obstacle we ran
into was achieving a balance between the speed of our algorithm and the level of
optimization we perform.

This calls for several heuristics that we need to perform. These assumptions are
used to decrease the size of the search space thereby reducing the amount of time
taken for these optimization problems.

Below we list some examples of the heuristics that we chose:

1.	 	 Assuming that actions taken within each turn are independent on one
another. This reduces the simulation complexity from a multiplicative
combination to an additive combination across the actions taken in each turn,
because we can just simulate the actions taken one after the other rather than
combinatorically simulating all possible actions per turn.

2.	 	 We group locations together based on their distance. In other words,
instead of searching over individual coordinates of which there are n x n, we
search over blocks of coordinates each of size k x k first before recursing
on the best block of size k x k. This hierarchical search strategy effectively
reduces a search that scales linearly in n to one that scales logarithmically in
n (similar to binary search). This was useful in practice to increase the running
speed of our simulation algorithms and allows us to perform more detailed
simulations in the same time.

3.	 	 We only perform simulate actions that are “reasonable”, where we define

>_T / 04

reasonable as possibly gaining good rewards. This is determined using a
combination of the shortest paths, the reward of each path, as well as the
opponent’s best response strategy. For example, when deciding where to
simulate our attacking units locations, we only optimize over the locations
where the shortest paths lead to higher rewards.

Each of these simplifying assumptions and heuristics were discussed at length
between the team members. We tested each assumption for their impacts on our
algorithm’s performance and speed. We computed the tradeoff that resulted from
each heuristic and our final algorithm was generally optimized to achieve best
performance while running quickly within the time limit.

Q2.2. Please walk us through your final algorithm’s logic, as well as one

significant non-obvious change you made to your algo along the way, as

well as the rationale for the change.

>_T / 05

Our final algorithm is composed of 3 sections: simulation, attack, and defense.

Our simulation strategy forms the basis of our algorithm. Given the current
state of our board and an attacking unit at a starting location, the simulation
strategy involves determining the shortest path that the unit will take towards the
opponent’s board and simulating the reward that this agent obtains (either back
destroying opponent blockers or reaching the opponent’s end of the board).

In order to determine shortest path through the board, the default algorithm uses
breadth first search to determine the shortest paths for our agents to take towards
the opponent’s area. Below we list some important improvements we made to
improve the efficiency of our search algorithm. Let n denote the number of edge
vertices and m denote the number of edges.

One big change we made was to improve the efficiency of our algorithm by using
more efficient search algorithms. We realized that the original algorithm provided
used variants of breadth first search to determine the shortest path. Furthermore,
BFS is run 3 times for a total runtime of O(m + m + m) each time. In our
scenario our graph (which is actually a grid in our case) is very dense and m is
approximately equal to O(n^2). Therefore this is an inefficient algorithm especially
because we need to compute this multiple times from multiple possible starting
locations. We first changed this to Dijkstra’s algorithm which runs in time O(m +
n log n) by using the Fibonacci heap data structure. We observed that this led to
some practical speedup in the runtime.

Even through this improved the runtime, we still need to run this for all pairs of
source and target edge locations. This means that the total runtime is O(n^2 m +
n^3 log n).

For an even more efficient algorithm, we decided to use an all-pairs shortest
pairs algorithm which will prevent us from having to run the same shortest path
algorithm multiple times from multiple possible starting locations. To do so, we

>_T / 06

use an all-pairs shortest paths algorithm based on the Floyd-Warshall algorithm
which runs in total time O(n^3). Floyd-Warshall is a dynamic programming
algorithm which recurses on whether we pass through every node in the graph.
In other words, starting from the same base case (the shortest path that uses
no intermediate nodes), we’ll then go on to considering the shortest path that’s
allowed to use node 1 as an intermediate node, the shortest path that’s allowed to
use {1,2} as intermediate nodes, and so on. This is an important speedup since
recall that our graph is fully connected with m approximately equal to O(n^2).
Therefore, speeding up our algorithm from O(n^2 m + n^3 log n) to O(n^3) does
empirically improve the speed of our algorithm during the simulation phase.

Then, our simulation strategy is based on a function path_score() which given
the game state, a number of units spawned at a particular location, simulates the
movement of the units moving through the board and towards the opponent. We
store the values of the path_score() outputs for all paths. Furthermore, another
optimization that we made is to only recompute path_score() if some unit was
destroyed, rather than every turn. This is because the score of paths will remain
approximately the same unless something was destroyed along its path. This
heuristic further sped up our simulations as compared to the naïve baseline.

Given the simulation and search strategies, our attacking strategy is based on
finding the actions that maximize the reward. Again we use the path_score()
function. By (approximately) maximizing the output of this function with respect
to the number of units, their type, and a starting location on our side of the board,
we are able to (approximately) determine the optimal attacking strategy for the
current state of the game. We simulate the outcome of placing types and numbers
of attacking units at particular locations and choose the best performing ones.

Our defensive strategy is largely based on a set of predefined locations to place
the filters, encryptors, and destructors. We obtained these predefined locations
by looking at experts playing the game. This is similar to how imitation learning is
used to initialize reinforcement learning agents before tuning via self-play. After
looking at several forums and leaderboard we decided on a maze strategy as
shown below:

>_T / 07

We found that maze structure is useful because the filter units protect us

from direct paths from the opponent to our area, and also increase the

distances that the opponent attacking units have to travel before they

reach us. The opponent units are forced to travel through the narrow maze

path and by placing destructors along this path we are able to effectively

destroy opponent units. Finally the last line of encryptors provide additional

stability to the defensive units in front of them.

Our maze structure is further modified dynamically by observing the

attacking and defending actions taken by the opponent and choosing the

areas which are particularly exploitable. For example, if we see that the

opponent attacks and defends primarily from the right, we will structure

our walls towards the right and leave a space on the left which our

attacking units can pass through. As a result, we are able to block their

attacks from the right and exploit their undefened left areas. Again, these

are performed by using path_score() from the opponent’s point of view to

simulate their most dangerous strategy. We then simulate adding defensive

units at particular predefined locations on our board and re-running path_

score() to determine the how effectively these defensive units reduced

the opponent’s best score. Finally, we spent the last 30 minutes making

a few more minor heuristic optimizations of the same sort by looking at

past leaderboards and looking at how experts designed their defensive

strategies as well as playing against the provided bosses.

Overall, our strategy is shown in the figure below as a flowchart across the

3 main modules: simulation oracle, attacking phase, and defending phase.

> _ E n g i n e e r i n g D e s i g n

Q3.1. Please walk us through the main components of your code. How did

you design and organize these components to maximize code quality and

efficiency?

>_T / 08

The most important helper function in our code is a function called

path_score(adv_game_state, location, unit_type, num_units)

which given the game state, a number of units spawned at a particular location,
simulates the movement of the units moving through the board and towards the
opponent. This function was most helpful because it served as a core component
of our attacking and defensive strategies. By (approximately) maximizing the
output of this function with respect to the number of units, their type, and
a starting location on our side of the board, we are able to (approximately)
determine the optimal attacking strategy for the current state of the game.
Similarly, we can simulate the opponent’s best response strategy by maximizing
over the number of units, their type, and their starting location from the
opponent’s side of the board. This allows us to heuristically determine the regions
of where the opponent’s units are most dangerous so we can build defensive
units in those regions. As a simple example, suppose we have relied on attacking
and defending from the right, then running path_score() from the opponents
side would tell us that the opponent could exploit the left side of our board. We
can then simulate adding defensive units at particular locations on the left side
of our board and re-running path_score() to determine the how effectively these
defensive units reduced the opponent’s best score. We can then approximately
obtain a good defensive action (defensive units + locations) to combat the
opponent’s best response attack. All of these optimizations are performed
approximately by using blocks of locations (e.g. left, middle, right) rather than
optimizing over individual coordinates themselves.

>_T / 09

We provide some screenshots of our algorithm playing below:

Q3.2. Which sections of your algorithm code were your most proud of,

and why? Please display snippets of those sections which demonstrate the

quality of your code.

>_T / 10

We are most proud of our code that simulates possible paths and rewards. We
consider this to be a central part of our algorithm that is crucial to both attack and
defense. We show a snippet of this section below:

> _ P o s t - M o r t e m T h o u g h t s

Q4.1. Compare and contrast your algorithm with other top algorithms

on the leaderboard. What do you see or do that others missed, and vice

versa? What would you do differently next time?

>_T / 1 1

The strength of our algorithm lies in 2 areas: simulation and optimization.

For simulation, our algorithm effectively simulates possible strategies that
we could take in terms of attacking and defensive strategies, as well as the
opponent’s best response. This is as opposed to hardcoding common algorithms
for defending (e.g. maze strategy) which is commonly done even in experiences
players. Our approach is a combination of both strategies since we start with a
base maze structure and further optimize on top of it by incorporating dynamic
adjustments to defend against opponent attacks as based on simulations.

For optimization, we experimented with various faster algorithms for shortest
path computation for our simulation. We were able to improve over the BFS
methods provided using Dijkstra’s and faster heap structures. We also found that
all pairs shortest paths help, as was storing the best scores along paths and only
recomputing when units were destroyed. All of these algorithmically optimizations
sped up our algorithm and allowed us to simulate possible actions taken by us and
the opponent to determine good strategies.

Something that they did better than us was perhaps the use of more heuristics
for both attacking and defending. We noticed that some good teams also had
completely different defensive structures such as overloading defensive on one
side (which also concentrates attacking units on that side) or concentrating in the
center.

In the future, we would like to further experiment with heuristics that may
improve performance. For example, we could change the base defensive strategy
completely instead of using the maze structure. We are also thinking of using
reinforcement learning (RL) to directly optimize for the optimal policy based on the
inputs state space and output actions. We would likely initialize the RL method to
imitate expert policies (imitation learning) before training the RL agent via self-
play.

T e c h n i c a l A p p e n d i x

G a m e O b j e c t i v e
Terminal is a 2-player web-based strategy game played on a diamond-

shaped board. Each player occupies half of the board, and the objective

is to navigate units across the opponent’s territory, overcoming the

opponent’s defenses.

R e s o u r c e s & U n i t s
Players have limited resources. Those resources are used to purchase

units, which can be offensive or defensive. Offensive units move into the

opponent’s territory, and defensive units protect against incoming enemy

units.

There are three types of defensive units and three types of offensive units.

Units differ in their cost (in terms of resources), and their characteristics,

like speed and range of attack. Unit names and characteristics are

summarized in the table below.

>_T / 12

Name Cost Description

Filter 1 Core Cheap unit that blocks paths and soaks up
damage.

Encryptor 4 Cores Shields nearby friendly moving units making
them stronger.

Destructor 3 Cores Attacks nearby enemy moving units.

Ping 1 Bit Fast cheap unit good for scoring. Does slight
damage.

EMP 3 Bits
High range, high damage, but high cost
fragile unit good for destroying enemy
stationary units at a distance.

Scrambler 1 Bit
High health, high damage unit, but is
slow and only attacks enemy moving
units. Good for defense.

Players receive additional resources each turn, and must optimize the use

of those resources given the opponent’s defenses and behavior.

P r o g r a m m at i c I n t e r f a c e & S ta r t e r K i t
Players play Terminal by writing code to automate their decision logic. They

receive a starter algorithm [LINK HERE], and documentation for the game

engine API [LINK HERE].

In making their strategic decisions, player algorithms are given access

to detailed game state information--a matrix representation of the board

positions, units deployed etc.--and can use that information along with past

game state information to make decisions.

Players can also access “replay files”, which contain the time series of

game states from historical matches, in order to improve their algorithms.

C o m p e t i t i o n S t r u c t u r e
Participants enter a long-duration global competition. The first global

competition--”Season 1”--started in September 2018 and ended in

December 2018. Approximately 12000 players entered the Season 1

competition.

Throughout the competition, players could access a global leaderboard

which updated in real-time. In this way, participants got immediate

feedback on the strength of the algorithms they uploaded, and they also

got access to replay files which they could use to view matches they won

and lost. Participants were allowed to update and re-submit algorithms as

many times as they liked.

After the close of Season 1, a new global competition (“Season 2”)

launched in January 2019 with an end-date of April 2019.

>_T / 13

https://github.com/correlation-one/C1GamesStarterKit/
https://docs.c1games.com/

